After lots of comings and goings, trials, redesigns, burnts, cuts and some minor explosions, finally I can bring a smart desktop clock I have been working on for the last 2 years. Making a detailed tutorial can be even longer and tedious, so I hope these traces can help make your own. I warn you this takes a lot of time and practice, and can’t be done carelessly…

What's Temps-i 7?

Let's break down its name:

  • Temps mean time in the Valencia dialect,
  • i for internet, where it gets the time,
  • 7 for the display, which uses 7 segments for every digit.

These three concepts define this compact desktop clock, with WIFI connectivity, temperature sensor and good autonomy.

Let's see how it's made!

Components

First, let's see the recipe ingredients and what each one does:

  • Sparkfun ESP32-Thing board
    >>Top performance microcontroller with WIFI and Bluetooth connectivity thanks to the ESP32 integrated chip, ideal for IoT projects.
  • 4 digits 7 segments red color display.
    >>Shows time and temperature.
  • BMP-280 module.
    >>Temperature and barometric pressure compact digital sensor.
  • 100 Ohm resistors
    >>Needed to reduce display current, without lowering brightness excessively (admits up to 1k Ohm, but leds would be hardly visible with daylight).
  • PCB with custom circuit.
    >>Simplifies display and resistors connectiont to the microcontroller.
  • 1000mAh 3.7v LiPo battery
    >>Ensures an autonomy up to 48 hours without external voltage.
  • Jumper cables.
    >>For additional connections of external modules.
  • Push button
    >>Used to switch the program on display.

Electronic design

It's very important to study the electronic components being used, read all the specifications and prototype with all precautions before we start soldering like crazy.

Component selection

The components listed earlier are not a mere coincidence or copied from elsewhere. They're the most successful trial of many others and meets the project needs:

  • The 4 digit display shows exactly what I'm after: the time. If I can also use it to show temperature, that's fine. But a better quality display, like LCD, would be unnecessarily demanding, and autonomy is another key requirement.
  • The microcontroller includes internet connectivity, as well as enough computing capacity. It also has sufficient in/out pins to control the display without a gpio expansor. Some other options I've tried:
    • More compact microcontrollers: Teensy 4, Digispark, SparkFun Pro Micro. They need a GPIO expansor (like PCF8574) and/or a WIFI module (like ESP-01). This also involves too many more connections.
    • Microcontrollers integrating WIFI and sufficient I/O, like NodeMCU ESP8266. Got out-dated and lacks processing capacity as the counter delayed almost 4 seconds every minute.

Prototyping electronic circuit

Having researched and obtained the components, connect them in a prototype board (protoboard) to test their operation.

In my case, after different pin combinations, the most organised way is the following:

ESP32-ThingComponent
VBATLiPo +
3V3BMP-280 3V3
GNDLiPo -
BMP GND
BMP SD0
Push -
GPIO21BMP SDA
GPIO04BMP SCL
GPIO32Push +
GPIO17Display Digit 1
GPIO23Display Digit 2
GPIO19Display Digit 3
GPIO25Display Digit 4
GPIO15Display Segment A
GPIO22Display Segment B
GPIO27Display Segment C
GPIO12Display Segment D
GPIO13Display Segment E
GPIO18Display Segment F
GPIO26Display Segment G
GPIO14Display Segment P (dot)

Pinout schematic

Once the prototype is achieved, you should save it in a schematic diagram using EDA software (electronic design automation) like Kicad, where you can also generate a PCB design that can be sent for manufacturing. Otherwise, you can always save the schematic in paper, as you wont remember where every cable was going in a couple months time...

Kicad is a bit tricky and it's good to practice with simpler projects. Despite this, it's quite manageable for medium users as it basically consists of searching and choosing symbols for our components and connect their pins accordingly to specifications.

To avoid messing the sketch up with cables, I used names in every connection, which is also valid in Kicad. Also, you'll see that the ESP32-Thing is made up of two 20x pin headers, as I didn't find a working symbol and didn't have time to design one properly. What really matters is that the design is working and coherent with reality.

Kicad shematic

Next step is to assign footprints that are realistic for each symbol, so then we can design a printed circuit board that we can order (usually in China) for 15€ / 5 boards.

You don't need to go crazy on this, specially if you're not experienced. I only need to make soldering connections simpler, as in this case you need about 90 of them but keeping a compact design.

Clock programming

Most microcontrollers, like the ESP32-Thing, are compatible with the Arduino IDE, which makes it simpler to connect the board to a PC and load a clock program.

Before starting, it's important to make a list of tasks and functions that we want to include in the program and modify it as we code. This way you can try different functions separately and debug every step to find errors quickly. In my case, and after many trials, the program will consist of the following:

  1. Define libraries and variables.
  2. Configure pins.
  3. Connect WiFi.
  4. Get date via SNTP.
  5. Disconnect and turn off WiFi (saves battery).
  6. Convert date into digits.
  7. Show digits on display.
  8. Start timer.
  9. Start reading program change pin.
  10. Change program on pushbutton activation.
    1. Read sensors.
    2. Show temperature on display.
  11. Update time after timer ending (every minute).
  12. Restart timer.

I don't want to spend too long on the code, and it's also not the most tidy I have, but here it is for anyone who wants to copy it, and also on github:

https://github.com/TheRoam/Tempsi-7

//----------------------------------------------------------------//
//    Temps-i 7 WiFi clock and temperature in 4 digit display     //
//  v 1.0.1                                                       //
//                                                                //
//  Interfaces:                                                   //
//  - Sparkfun ESP32-Thing micocontroller                         //
//  - BMP-280 temperature and pressure digital sensor             //
//  - 4 digit 7 segment display                                   //
//  - Programm push button                                        //
//  - LiPo Battery                                                //
//                                                                //
//  Detailed documentation:                                       //
//  https://theroamingworkshop.cloud                              //
//                                                                //
//                © THE ROAMING WORKSHOP 2022                     //
//----------------------------------------------------------------//
#include < esp_wifi.h >
#include < WiFi.h >
#include < WiFiMulti.h >
#include "time.h"
#include "sntp.h"
#include < Wire.h >
#include < Adafruit_BMP280.h >
// Spaces inside <> only shown for correct html display. Remove them in Arduino IDE
//BMP280 sensor using I2C interface
Adafruit_BMP280 bmp;
#define BMP_SCK  (4)
#define BMP_MISO (21)
#define BMP_MOSI (4)
#define BMP_CS   (21)
//Sensor variables
float TEMP=0;     //temperature variable
float ALT=0;      //altitude variable
float PRES=0;     //pressure variable
float hREF=1020.0;//sea level reference pressure in hPa
//define time variables
RTC_DATA_ATTR long long TIME=0; //concatenated time
RTC_DATA_ATTR long long d=0;  //day
RTC_DATA_ATTR long long m=0;  //month
RTC_DATA_ATTR long long Y=0;  //year
RTC_DATA_ATTR long long H=0;  //hour
RTC_DATA_ATTR long long M=0;  //minute
RTC_DATA_ATTR long long S=0;  //second
RTC_DATA_ATTR uint32_t dS=0;  //seconds counter for dot
RTC_DATA_ATTR struct tm timeinfo; //saves full date variable
long long inicio=0; //saves start time
long long ahora=0;  //saves current time
//Define digit pins in an array, in display order, for looping
//Numbers match ESP32-Thing GPIO number
int DigPins[4]{
  17,// first digit (GPIO 17)
  23,//second digit (GPIO 23)
  19,//third digit  (GPIO 19)
  25//fourth digit  (GPIO  25)
};
//Define segment pins
//Numbers match ESP32-Thing GPIO number
int SegPins[8]{
  14,   //P
  26,   //g
  18,   //f
  13,   //e
  12,   //d
  27,   //c
  22,   //b
  15    //a
};
//Auxiliary variables
//Numbers match ESP32-Thing GPIO number
int ProgPin=32;   //Pin no used for program
int ButtonStatus=1;
int ledPin=5;     //Used to blink the ESP32-Thing blue led
int ProgNum=-1;   //Define a variable to keep track of current program number
// WIFI
// Define your wifi network and credentials
char ssid1[] = "YOUR_WIFI_SSID1";
char pass1[] = "YOUR_WIFI_PASS1";
char ssid1[] = "YOUR_WIFI_SSID2";
char pass1[] = "YOUR_WIFI_PASS2";
WiFiMulti wifiMulti;
// NTP variables
// Update time zone if needed
const char* ntpServer1 = "pool.ntp.org";
const char* ntpServer2 = "time.nist.gov";
const long  gmtOffset_sec = 3600;
const int   daylightOffset_sec = 0; //this will be corrected later with software
const char* time_zone = "CET-1CEST,M3.5.0,M10.5.0/3";  // TimeZone rule for Europe/Rome including daylight adjustment rules (optional)
// Displayed characters in every digit are a byte array indicating ON (1) and OFF (0) segments
// Use a wiring pattern that matches an understandable byte chain so you can make them up easily
// Segment/byte pattern: Babcdefgp --> where 1 is HIGH (ON) and 0 is LOW (OFF)
// Refer to a character by calling this array, i.e.:
//  - call number 3 by calling ns[3]
//  - call letter A by calling ns[20]
//  - call underscore symbol (_) by calling ns[49]
byte ns[50]{ // Array Position - Byte character
  B11111100,// 0-0
  B01100000,// 1-1
  B11011010,// 2-2
  B11110010,// 3-3
  B01100110,// 4-4
  B10110110,// 5-5
  B10111110,// 6-6
  B11100000,// 7-7
  B11111110,// 8-8
  B11110110,// 9-9
  B11111101,// 10-0.
  B01100001,// 11-1.
  B11011011,// 12-2.
  B11110011,// 13-3.
  B01100111,// 14-4.
  B10110111,// 15-5.
  B10111111,// 16-6.
  B11100001,// 17-7.
  B11111111,// 18-8.
  B11110111,// 19-9.
  B11101110,// 20-A
  B00111110,// 21-b
  B10011100,// 22-C
  B01111010,// 23-d
  B10011110,// 24-e
  B10001110,// 25-f
  B10111100,// 26-G
  B00101110,// 27-h
  B00001100,// 28-I
  B11111000,// 29-J
  B01101110,// 30-K(H)
  B00011100,// 31-L
  B00101010,// 32-m(n)
  B00101010,// 33-n
  B00111010,// 34-o
  B11001110,// 35-P
  B11100110,// 36-q
  B00001010,// 37-r
  B10110110,// 38-S
  B00011110,// 39-t
  B01111100,// 40-U
  B00111000,// 41-v
  B00111000,// 42-w(v)
  B01101110,// 43-X(H)
  B01110110,// 44-y
  B11011010,// 45-Z
  B00000001,// 46-. (dot)
  B11000110,// 47-* (astherisc)
  B00000010,// 48-- (hyphon)
  B00010000,// 49-_ (underscore)
};
//array to store displayed digits
int digits[4];
//digit calculation variables
int first_digit = 0;
int second_digit = 0;
int third_digit = 0;
int fourth_digit = 0;
//counters for looping digits and current number
int dig=0;
int n=0;
int dot=1;
void setup()
{
  // Start disabling bluetooth and WIFI to save energy
  // Just power WIFI later, when needed.
  esp_err_t esp_bluedroid_disable(void);
  esp_err_t esp_bt_controller_disable(void);
  WiFi.disconnect(true);
  WiFi.mode(WIFI_OFF);
  
  // Start serial communication for any debug messages
  // Commented for production; uncomment for debugging
  //Serial.begin(115200);
  //Define I2C pins, as we are not using standard ones
  Wire.begin(21,4);
  // Activate digit pins looping the pin array.
  for (dig=0; dig<4; dig++){
    pinMode(DigPins[dig], OUTPUT);
  }
  for (dig=0; dig<4; dig++){  //set them LOW (turn them OFF)
    digitalWrite(DigPins[dig], LOW);
  }
  // Activate segment pins
  for (int i=0; i<8; i++){
    pinMode(SegPins[i],OUTPUT);
  }
  // Activate LED pin
  pinMode(ledPin, OUTPUT);
  // Activate PROG pin
  pinMode(ProgPin, INPUT_PULLUP);
  // Turn ON Wifi
  wifiON();
  
  // Setup NTP parameters
  sntp_set_time_sync_notification_cb( timeavailable );
  sntp_servermode_dhcp(1);
  configTime(gmtOffset_sec, daylightOffset_sec, ntpServer1, ntpServer2);
  //wait for date
  do{
    delay(100);
  }while(TIME==0);
  delay(500);
  //WIFI can be turned off now
  wifiOFF();  
  // Setup BMP280
  unsigned status;
  //BMP-280 I2C Address:
  // 0x76 if SD0 is grounded
  // 0x77 if SD0 is high
  status = bmp.begin(0x76);
  if (!status) {
    Serial.println(F("Could not find a valid BMP280 sensor, check wiring or "
                      "try a different address!"));
    Serial.print("SensorID was: 0x"); Serial.println(bmp.sensorID(),16);
    Serial.print("        ID of 0xFF probably means a bad address, a BMP 180 or BMP 085\n");
    Serial.print("   ID of 0x56-0x58 represents a BMP 280,\n");
    Serial.print("        ID of 0x60 represents a BME 280.\n");
    Serial.print("        ID of 0x61 represents a BME 680.\n");
    ESP.restart();
    while (1) delay(10);
  }
  //Default settings from datasheet.
  bmp.setSampling(Adafruit_BMP280::MODE_NORMAL,     // Operating Mode.
                  Adafruit_BMP280::SAMPLING_X2,     // Temp. oversampling
                  Adafruit_BMP280::SAMPLING_X16,    // Pressure oversampling
                  Adafruit_BMP280::FILTER_X16,      // Filtering.
                  Adafruit_BMP280::STANDBY_MS_500); // Standby time.
  //get initial readings
  readSensors();
  
  // Get correct time
  sync_clock();
  num_shift();
  // Set start time
  inicio = millis();
  // Set dot time
  dS=millis();
}
void loop(){
  // After setup, this function will loop until shutdown.
  
  // Start time counter using chip's milisecond counter
  uint32_t ahora=millis();
  
  // Check if the counter has reached 60000 miliseconds.
  // Calibrate if you realize that time desyncs
  // This depends on processor calculation, which can vary with input voltage (if on batteries) and temperature.
  while ( (ahora-inicio+(S*1000)) < 59500){
    // Run dot blinker when not showing temperature
    //commented as it sometimes desyncs the hour digit (needs fixing)
    /*if(ProgNum==-1){
      dot_blinker();
    }*/
    
    // Reading push button:
    // when pressed change status
    if(digitalRead(ProgPin)==1){
      ButtonStatus=1;
    }
    // when released after press, set "program change" status
    // this avoids constant change when holding
    if(digitalRead(ProgPin)==0 && ButtonStatus==1){
      ButtonStatus=2;
    }
    // Status 2 -> Programm change
    if(ButtonStatus==2){
      //reset status
      ButtonStatus=0;
      //update programm number
      ProgNum=-ProgNum;
      Serial.println(ProgNum);
      //change to temp
      if(ProgNum==1){
       //light LED
       digitalWrite(ledPin, HIGH); 
       //save TIME
       TIME=digits[0]*1000+(digits[1]-10)*100+digits[2]*10+digits[3];
       //show temp
       room_temp();
      }else if(ProgNum==-1){  //change to time
        //turn off LED
        digitalWrite(ledPin, LOW);
        //restore time
        split_time(TIME);
      }
    }
    
    //update time counter
    ahora=millis();
    num_shift();
    delay(6);
  }
  // End of while() after 60 seconds
  // Reset initial time
  S=0;
  inicio=millis();
  //make sure there's dot at the end
  if(digits[1]<=10){
    digits[1]+10;
    dot=0;
  }
  //update time
  //if program is in temperature, change to time
  if(ProgNum==1){
    split_time(TIME);
    ProgNum=-1;
  }
  updateMinutes();
}
//-WIFI function
//--Setup and turn Wifi ON
void wifiON(){
  // Set up WIFI (ESP32 Thing only working with wifiMulti library)
  Serial.println("Conectando");
  wifiMulti.addAP(ssid1,pass1);
  //wifiMulti.addAP(ssid2,pass2);
  int led=1;
  int boot=1;
  wifiMulti.run();
  //WiFi.disconnect(true);
  
  while((WiFi.status() != WL_CONNECTED)){
    digitalWrite(ledPin, HIGH);
    delay(500);
    digitalWrite(ledPin,LOW);
    delay(500);
    wifiMulti.run();
  }
  // Make sure LED is off when finished
  digitalWrite(ledPin,LOW);
  // When CONNECTED, while loop ends.
  Serial.print("Conectado a ");
  Serial.println(WiFi.SSID());
  Serial.println(WiFi.localIP());
}
//-Disable WIFI
void wifiOFF(){
  //turn WIFI off as it's not needed any more
  WiFi.disconnect(true);
  WiFi.mode(WIFI_OFF);
  //disable wifi (deinit clears all flash data)
  esp_wifi_deinit();
}
//----BMP280 functions
//-Read sensor data
void readSensors(){
  TEMP=bmp.readTemperature();
  Serial.println("T: "+(String)TEMP+"ºC");
  PRES=bmp.readPressure();
  Serial.println("P: "+(String)PRES+"hPa");
  ALT=bmp.readAltitude(hREF);
  Serial.println("h: "+(String)ALT+"msnm");
}
//----NTP functions
//-Callback function (get's called when time adjusts via NTP)
void timeavailable(struct timeval *t)
{
  Serial.println("Got time adjustment from NTP!");
  simpleTime();
}
void simpleTime()
{ 
  if(!getLocalTime(&timeinfo)){
    Serial.println("No time available (yet)");
    return;
  }
  Serial.print("Synced time: ");
  Serial.println(&timeinfo, "%A, %B %d %Y %H:%M:%S");
  //save time
  sync_clock();
}
//-
//PROGRAM #0: HELLO at startup
//function to say "HOLA" at start up while connecting to WiFi
void ini_HOLA(){
  int h=30;
  int o=34;
  int l=31;
  int a=20;
  digits[0]=46;
  digits[1]=46;
  digits[2]=46;
  digits[3]=46;
}
//PROGRAM #1: WiFi synced time
//function that gets current time via WiFi
void sync_clock(){
  Y=timeinfo.tm_year;
    TIME=TIME+Y*10000000000;
  m=timeinfo.tm_mon;
  m=m+1;
    TIME=TIME+m*100000000;
  d=timeinfo.tm_mday;
    TIME=d*1000000;
  H=timeinfo.tm_hour;
  //check daylight saving time and correct hour
  //"27 Mar (03 27) +1 hour; 30 Oct (10 30) back -1 hour"
  if( ( m*100+d >= 327 ) && ( m*100+d < 1030 ) ){
    H=H+1;
  }else{
    H=H;
  }
  TIME=TIME+H*10000;
  M=timeinfo.tm_min;
    TIME=TIME+M*100;
  S=timeinfo.tm_sec;
    TIME=TIME+S;
    
  //split current 4 digit time into sigle digits
  split_time((TIME/100)-((TIME/100)/10000)*10000);
}
//number splitting function to separate time string into digits
void split_time(long long num) {
  first_digit = num / 1000;
  digits[0] = first_digit;
  int first_left = num - (first_digit * 1000);
  second_digit = first_left / 100;
  digits[1] = second_digit;
  //añadimos el segundero fijo (sumamos 10)
  digits[1] = digits[1]+10;
  int second_left = first_left - (second_digit * 100);
  third_digit = second_left / 10;
  digits[2] = third_digit;
  fourth_digit = second_left - (third_digit * 10);
  digits[3] = fourth_digit;
}
// number shifting function
void num_shift(){
  for (dig=0; dig<4; dig++){// turn digits off
    digitalWrite(DigPins[dig], HIGH);
  }
  
  //turn them ON (LOW) one by one
    digitalWrite(DigPins[n], LOW);
    for(int seg=7; seg>=0; seg--){
      //read byte array for digit
      int x = bitRead(ns[digits[n]],seg);
      //turn the segments ON or OFF
      digitalWrite(SegPins[seg],x);
    }
    n++;// move to next no.
    if (n==4){// if no. is 4, restart
      n=0;
    }
}
//Getting room temperature from LM35 sensor via NodeMCU analog input pin (ADC)
void room_temp(){
  readSensors();
  //This will return temperature in XY.Z format
  //We don't want the integer value, so we can use the four digits to display temperature units as well "XYºC"
  //Getting first digit in byte format ns[X] where X=int(XY.Z/10)=int(X.YZ)=X
  digits[0]=int(TEMP/10)-int(TEMP/100)*10;
  //Getting second digit in byte format ns[Y] where Y=int(XY.Z)-X*10=int(XY.Z)-int(XY.Z/10)*10
  digits[1]=int(TEMP/1)-int(TEMP/10)*10;
  //Setting temperature units as degree celsius (ºC) in byte format
  digits[2]=47; //astherisc *
  digits[3]=22; //character C
}
void updateMinutes(){
  //add 1 to the last digit
  digits[3]=digits[3]+1;
  //if greater than 9, reset to 0
  if (digits[3]>9){
    digits[3]=0;
    //then add 1 to the third digit
    updateM0();
  }
  //send last digit to display
  digitalWrite(DigPins[3], LOW);
}
void updateM0(){
  //add 1 to third digit
  digits[2]=digits[2]+1;
  //if greater than 5, reset to 0
  if (digits[2]>5){
    digits[2]=0;
    //then add 1 to current hours
    updateH1();
  }
  //send digit to display
  digitalWrite(DigPins[2], LOW);
}
void updateH1(){
  //add 1 hour
  digits[1]=digits[1]+1;
  // if greater than 19, reset to 10
  // (instead of number 0-9, we use numbers 10-19 in order to add the "dot" to the display)
  if (digits[1]>19){
    digits[1]=10;
    //then add 1 to the first digit
    updateH0();
  }// reset when it's 24h (go back to 00)
  if(digits[1]>13 && digits[0]==2){
    digits[0]=0;
    digits[1]=10;
  }
  //display digits
  digitalWrite(DigPins[1], LOW);
  digitalWrite(DigPins[0], LOW);
}
void updateH0(){
  //add 1 to first digit
  digits[0]=digits[0]+1;
  //if greater than 2, reset to 0 (it shouldn't happen as we reset earlier, but just in case..)
  if (digits[0]>2){
    digits[0]=0;
  }
  //display digit
  digitalWrite(DigPins[0], LOW);
}
void dot_blinker(){
  //every second, blink the dot
    if( millis()-dS > 1000 && dot == 1){
      digits[1]=digits[1]-10;
      dS=millis();
      dot=0;
    }
    if( millis()-dS > 250 && dot == 0){
      digits[1]=digits[1]+10;
      dot=1;
    }
}

Notice you'll need these additional libraries installed using the Arduino IDE:

  • esp32 board manager by Espressif
  • WiFiMulti library
  • Adafruit_BMP280 library
    • (the rest of the libraries derive from these ones)

You should constantly try the performance of the code during prototyping so you can change any pin assignment in case of any malfunctioning. If it's all soldered and something fails, it will be really hard to find and solve the error, if it's from a connection.

Assembly

Soldering

Once the code is checked and the PCB is designed, you can start soldering with caution, as a wrong movement can damage your modules or produce errors in the program.

Case design

Having it all soldered you'll have a better idea of the final volume of the device. I measure it all with precision using a digital caliper to make a 3D model of it.

Blender 3D model of all components in their final position

This way you can now design a case around the model so you can craft it using a 3D printer. You could also use other types of assembling materials like plywood or metal.

I usually craft two pieces (one as a base and another one as a cover) so they can be screwed together. I also include different voids to allow for the connection of the USB cable, to add the program switch button and to add a rotary support to hold the clock in a slot in the television.

I will also use white PLA in one piece and grey in the other to bring more life to the design, ending it all like this:

And that's it. I hope you liked it and find it useful. Now you can get your own WIFI clock crafted! Any doubt about this clock can be dropped on Twitter! 🐦

🐦 @RoamingWorkshop